Lecture 32

Matching

Matching

M are incident with a common vertex.

Definition: A matching in M is **maximal** if there is no matching M' with $M \subset M'$ and is **maximum** if there is no matching M'' such that |M| < |M''|.

Definition: A matching in a graph G = (V, E) is a subset $M \subseteq E$ so that no two edges in

Cover and Perfect Matching

Definition: We say a matching M covers a set of vertices of vertices X, if every $x \in X$ is incident with some edge in M.

Definition: We say a matching in a graph G is **perfect** if it covers all the vertices of G.

M covers {2,6,3,7,4,8} 8

Perfect matching in this graph is not possible because we can either cover 5 or 7, but not both.

Matching in Real Life

Suppose there are 5 job openings and 6 applicants. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.

Observation: All the jobs can be filled if and only if there exists a matching M that covers $\{j_1, j_2, j_3, j_4, j_5\}.$

Alternating & Augmenting Path

Definition: If M is a matching in G = (V, E), a path P in G is M-alternating if the edges of P belong alternately to M and to $E \setminus M$. A path P is M-augmenting if P is M-alternating and its distinct end points u and v are not incident with an edge or edges of M.

Some *M*-alternating paths are:

(1,4,8,6,2,3,7), (7,3,2,6), (4,8), (1,3)

Some *M*-augmenting paths are:

(1,4,8,6,2,3,7,5), (5,7,3,1)

Berge's Theorem

Theorem: A matching *M* is maximum if and only if there is no *M*-augmenting path. **Proof:** (\implies) If there is an *M*-augmenting path, then *M* is not a maximum matching.

Let P be an M-augmenting path.

Let X be the set of edges in P that are in M and let Y be the rest of the edges. Then $(M \setminus X) \cup Y$ will a be a larger matching than M.