Lecture 32

Matching

Matching

Definition: A matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ so that no two edges in M are incident with a common vertex.

Definition: A matching in M is maximal if there is no matching M^{\prime} with $M \subset M^{\prime}$ and is maximum if there is no matching $M^{\prime \prime}$ such that $|M|<\left|M^{\prime \prime}\right|$.

Cover and Perfect Matching

Definition: We say a matching M covers a set of vertices of vertices X, if every $x \in X$ is incident with some edge in M. $M=$

M covers $\{2,6,3,7,4,8\}$

Perfect matching in this graph is not possible because we can either cover 5 or 7 , but not both.

Definition: We say a matching in a graph G is perfect if it covers all the vertices of G.

Matching in Real Life

Suppose there are 5 job openings and 6 applicants. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.

Observation: All the jobs can be filled if and only if there exists a matching M that covers $\left\{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}\right\}$.

Alternating \& Augmenting Path

Definition: If M is a matching in $G=(V, E)$, a path P in G is M-alternating if the edges of P belong alternately to M and to $E \backslash M$. A path P is M-augmenting if P is M-alternating and its distinct end points u and v are not incident with an edge or edges of M.

Some M-alternating paths are:

$$
\langle 1,4,8,6,2,3,7\rangle,\langle 7,3,2,6\rangle,\langle 4,8\rangle,\langle 1,3\rangle
$$

Some M-augmenting paths are:

$$
\langle 1,4,8,6,2,3,7,5\rangle,\langle 5,7,3,1\rangle
$$

Berge's Theorem

Theorem: A matching M is maximum if and only if there is no M-augmenting path.
Proof: (\Longrightarrow) If there is an M-augmenting path, then M is not a maximum matching.
Let P be an M-augmenting path.

Let X be the set of edges in P that are in M and let Y be the rest of the edges.
Then $(M \backslash X) \cup Y$ will a be a larger matching than M.

